Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam January 2006 Day 1: Problem 2 Solution

Exercise. Let $f(z) = z^{10} - 10z^3 + 2\sin z + 1$. Determine how many zeros f can have in the unit disk, and then prove your statement.

Solution. **<u>Rouche's Theorem</u>**: f, g analytic in open set U and γ a simple path in U, with its interior contained in U and with parameter interval I. If f has no zeros on $\gamma(I)$ and $|f(z) - g(z)| \le |g(z)|$ on $\gamma(I)$ then f and g have the same number of zeros, counting order, inside γ $f(z) = z^{10} - 10z^3 + 2\sin z + 1$ = q(z) + h(z) $h(z) = z^{10} - 10z^3$ Let $g(z) = 2\sin z + 1$ and $\forall z \in \delta D, \qquad |g(z)| \le 2 + 1 = 3$ $|h(z)| = |z^{10} - 10z^3|$ and $= |z^3||10 - z^7|$ $= |10 - z^7|$ $\geq 10 - |z|^7$ = 10 - 1= 9 $\implies |q(z)| < |h(z)|$ on δD By Rouche's Theorem, f and h have the same number of zeros in D. $h(z) = z^{10} - 10z^3 = z^3(z^7 - 10) := 0$ if $z^3 = 0$ or $z^7 - 10 = 0$ But if |z| < 1, then it must be true that $z^3 = 0$ $\implies z = 0$ So, h has 3 zeroes in the unit disk. Thus, f has 3 zeros in the unit disk.