Rutgers University: Complex Variables and Advanced Calculus Written Qualifying Exam
 January 2006 Day 1: Problem 2 Solution

Exercise. Let $f(z)=z^{10}-10 z^{3}+2 \sin z+1$. Determine how many zeros f can have in the unit disk, and then prove your statement.

Solution.

Rouche's Theorem: f, g analytic in open set U and γ a simple path in U, with its interior contained in U and with parameter interval I. If f has no zeros on $\gamma(I)$ and $|f(z)-g(z)| \leq|g(z)|$ on $\gamma(I)$ then f and g have the same number of zeros, counting order, inside γ

$$
\begin{aligned}
f(z) & =z^{10}-10 z^{3}+2 \sin z+1 \\
& =g(z)+h(z)
\end{aligned}
$$

Let

$$
g(z)=2 \sin z+1
$$

$\forall z \in \delta D$,
$|g(z)| \leq 2+1=3$
and
and

$$
\begin{aligned}
h(z) & =z^{10}-10 z^{3} \\
|h(z)| & =\left|z^{10}-10 z^{3}\right| \\
& =\left|z^{3}\right|\left|10-z^{7}\right| \\
& =\left|10-z^{7}\right| \\
& \geq 10-|z|^{7} \\
& =10-1 \\
& =9
\end{aligned}
$$

$$
\Longrightarrow \quad|g(z)|<|h(z)| \text { on } \delta D
$$

By Rouche's Theorem, f and h have the same number of zeros in D.

$$
h(z)=z^{10}-10 z^{3}=z^{3}\left(z^{7}-10\right):=0 \quad \text { if } \quad z^{3}=0 \quad \text { or } \quad z^{7}-10=0
$$

But if $|z|<1$, then it must be true that $z^{3}=0$

$$
\Longrightarrow z=0
$$

So, h has 3 zeroes in the unit disk.
Thus, f has 3 zeros in the unit disk.

